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Parasitic Capacitance Associated With Inductive
Sensors Used in MIT Imaging

Joe R. Feldkamp

Abstract— Magnetic induction tomography (MIT) has recently been accomplished using a single inductive sensor, but
under the assumption that it behaves as an ideal inductor. When performing a scan with a sensing coil that typically
consists of a collection of concentric circular PCB copper traces connected in series, small amounts of parasitic
capacitance arise that contribute to measured tank circuit loss. Results of this work quantify the magnitude of parasitic
capacitance and associated losses. For current inductive sensors, capacitance related loss is shown to diminish
considerably when the coil is positioned more than ∼2 cm from a target boundary. Recognizing that single coil MIT
scans generally position the coil within 2 cm of a target boundary, a correction is proposed that enables a more accurate
measurement of true inductive loss. Previously published scan data over agarose phantoms are then reexamined to show
the negative impact on imaging fidelity that results when capacitance related losses are ignored. Image comparisons are
made using full 3D image reconstruction, demonstrating that failure to compensate for parasitic capacitance loss can
degrade image fidelity.

Index Terms— Electrical Conductivity Distribution, Inductive Loss, Magnetic Induction Tomography, Scanning Single Coil
MIT, Texas Instruments LDC-1101, Parasitic Capacitance

I. INTRODUCTION

INDUCTIVE sensors used for single-coil MIT (magnetic
induction tomography) imaging applications commonly

consist of multiple loops of copper traces deposited on stan-
dard PCB (printed circuit board) substrates – essentially,
multiple short solenoids connected in series [1]. An exam-
ple is shown in Appendix C. Applied RF excitation creates
a time-dependent electro-magnetic field that generates eddy
currents at various locations within a nearby conductive target,
dependent upon local conductivity. Eddy current generation
requires that the original field do work to oppose eddy current
fields, resulting in a measureable loss in the tank circuit that
incorporates the inductor. Loss has been measured in a number
of ways, with each method agreeing closely with an analytical
result [1] that connects 3D conductivity with inductive loss.
This has formed the basis of single-coil MIT imaging ( [1]–
[9]) on low conductivity materials such as biological tissues.

As is true of any inductor, non-ideal behavior is present,
possibly impacting the quality of image reconstruction meth-
ods that ignore non-ideal behavior. The primary unwanted
behavior is parasitic capacitance, including that due to inter-
winding capacitance, but more critically, capacitance arising
between any of the coil loops and nearby conductive objects
– or, more generally, capacitance arising from an interaction
between individual loops and the entirety of a coil’s surround-
ings. Just as an inductor will have an associated loss due to
eddy currents, the capacitance of a coil loop interacting with
its environment will also have an associated loss due to charge
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redistribution and movement on surfaces of nearby conductive
objects.

A goal of this paper is to provide guidance on the extent
to which these loss quantities – inductive and capacitive
– can be differentiated and therefore made separate. Early
sections of this paper provide an in-depth examination of the
capacitance formed between a single annulus and a nearby
conductive target, where both analytical and boundary element
(BE) methods provide a good measure of the magnitudes of
capacitance that might be expected. This is followed by a
careful assessment of the loss associated with this capacitance
and how overall tank circuit loss might be corrected for any
capacitance related loss. Ultimately, the goal is to yield pure
inductive loss, for which a quantitative analytical model [1]
is available for image reconstruction. To build confidence
in the capacitance models, experimental results are offered
comparing capacitance predictions from the boundary element
model with measurements. Finally, the proposed correction is
used on existing single-coil scanning data for an agarose gel
phantom to show the impact on image fidelity.

II. CAPACITANCE OF A SINGLE ANNULUS

An important first step in evaluating coil-target capacitance
is to compute capacitance for the simple case of a single
annulus, relative to a grounded spherical shell located at
infinity. Once obtained, this result will serve as the starting
point for more general problems using boundary element
methods.

A single coil loop consists of an annulus having infinites-
imal thickness, with inner radius ‘a’ and outer radius ‘b’
– essentially, a circular trace on a PCB. Surface charge
density is considered to have a uniform value, α, across the
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entire annulus. Actual charge for a constant potential annulus
is not distributed uniformly, but this assumption is shown
later to have little impact on our results regarding capacitive
loss. Solving the appropriate Poisson’s equation using spatial
Fourier Transform methods leads to the desired solution:

ψs(r, z) = α
2 ε (b

∞∫
0

dκJ1(κb)J0(κr) e
−|z−zs|κ

κ

−a
∞∫
0

dκJ1(κa)J0(κr) e
−|z−zs|κ

κ )
(1)

The annulus is located along the Z axis, at z = zs. Using
the same strategy, a slightly more difficult problem solves for
the case of a uniformly charged annulus located on the Z axis,
set at a distance zs above a ground plane of zero potential:

ψs(r, z) =

α
2 ε


b
∞∫
0

dκJ1(κb)J0(κr)
(e−|z−zs|κ−e−|z+zs|κ)

κ

−a
∞∫
0

dκJ1(κa)J0(κr)
(e−|z−zs|κ−e−|z+zs|κ)

κ

 (2)

From equations (1) or (2), annulus capacitance relative to
either the ground plane or a grounded shell at infinity can be
computed as:

Cr =
π(b2 − a2)α

ψs(
a+b

2 , zs)
(3)

Charge density drops out of equation (3) when equation (1)
or (2) is introduced. As expected, capacitance over a ground
plane exceeds that relative to the infinite radius grounded
shell, though the former approaches the latter as zs → ∞.
As expected, the result for the annulus over a ground plane
agrees with the disc result found in problem 3.21, page 142
of Jackson (3rd Ed.) [26] if a is set equal to 0 here, and if
the Jackson result is specialized to a uniformly charged disk
[26]. Capacitance of an annular loop over a ground plane is
given in Figure 1 – loop radius to inner edge is either 2.0 or
4.0 cm, while trace width is 0.2 cm. Since the loop is likely
in air over a target, relative permittivity was set to 1.0.

All calculations shown in Figure 1 evaluate the integrals
found in equation (2) by subdividing the domain according
to the zeroes of the first order Bessel function, with each
subdivision handled using 8-point Gaussian quadrature – a
total of 99,990 intervals led to 6-digit accuracy. Thus far,
single-coil MIT experiments have only used annular rings with
radii less than or equal to ∼2.0 cm (e.g. Appendix C).

Clearly, capacitance quickly decays to its free-space value,
in agreement with values computed when using equation (1).
Beyond ∼2.0 cm distant from the ground plane, capacitance
changes very little, suggesting that any loss associated with
the annular capacitor would be similarly consistent from one
measurement to the next, allowing for easy subtraction. Un-
fortunately, single-coil MIT scan measurements most heavily
rely upon inductive loss measurements taken within the 0.0
– 2.0 cm range. Thus, a better understanding of how short-
range measurements are impacted by capacitance-related loss
is needed. In comparison, multiple-coil MIT [10] may not have
an issue with capacitance losses if coils are used at greater
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Fig. 1. Capacitance of annular rings over a ground plane; trace width is
0.2 cm – as reference, a metallic sphere of radius 2.0 cm has an isolated
capacitance of 2.2 pF, while capacitance is 4.4 pF when spherical radius
is 4.0 cm.

separations than that used in the single coil method. As an
example, the setup described in [16] suggests that coils are
used well outside the 2 cm limit indicated here and therefore
may not be subjected to adverse capacitance effects.

A. Annulus Capacitance Over Axisymmetric Bodies
Targets used in single-coil MIT are not well approximated

by an infinite ground plane. Rather, finite, ungrounded targets
are expected and may be less likely to facilitate charge build
up on the annular rings of an induction coil. If so, this would
be beneficial to image reconstruction from data acquired from
single-coil MIT scans. Thus, this section considers capacitance
calculations for annular rings over conductive axisymmetric
bodies, either grounded or ungrounded. In either case, ca-
pacitance is simply defined as charge accrued on the target
while grounded, divided by the ring potential at its midpoint.
Ungrounded targets remain uncharged if originally discharged
through momentary grounding. For sufficiently large targets
however, charge distribution on a grounded target may not
appear significantly different when grounded.

Though general targets can be treated by the methods of this
section, axisymmetric targets are considered a useful first step
to help better understand capacitance-related loss. Regardless
of target geometry, electric charge will reside only on target
surfaces. Thus, the target surface is an equipotential surface
while the interior electric field is zero. In such circumstances,
any variability of electrical conductivity or permittivity inside
a target is immaterial. In order to qualify as a perfect conductor
in a practical sense, the time constant for charge relaxation –
the ratio of permittivity to electrical conductivity [11] – should
be small compared to the electromagnetic field period. At 10
MHz, the human body may be treated as a perfect conductor
for the sake of capacitance calculations.

Thus, the usual Poisson equation applies to the system under
consideration:

∇2ψ = −ρs
ε0

(4)

Equation (4) applies to the entire region outside of the
target. The target is at uniform potential – zero if grounded.
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The charge density appearing in equation (4) is that due to
the uniformly charged annulus, centered on the Z-axis and
located at a distance z = zs above the XY plane. The target is
presumed to be located completely outside the space occupied
by the annulus.

The response of the conductive target to the presence of
the charged annulus is to accumulate charge across its surface
– a net charge of zero if the conductor is left ungrounded.
By superposition, the potential of equation (4) is written as
the sum of two potentials – that due to the annulus charge,
and the second due to the target’s surface charge, which is
distributed to ensure that boundary conditions are satisfied:

ψ(~r) = ψ̄(~r) + ψs(r, z) (5)

The second term on the right hand side of equation (5) is the
potential from equation (1), obtained for a uniformly charged
annulus, centered on the Z-axis with cylindrical coordinates
r and z. Introducing equation (5) into equation (4) yields
Laplace’s equation for the potential ψ̄, which may be written
more conveniently as an integral equation over the target’s
bounding surface with the help of Green function wi:

ciψ̄(~ri) =

∫
∂R

dawiψ̄n −
∫
∂R

da ψ̄win (6)

The constant ci = 1
2 if the point ri is exactly on the

boundary ∂R , but unity if point ri is off the boundary and
thus outside of the target [27]. The Laplace free-space Green
function is given by:

wi = w(~r, ~ri) =
1

4π |~r − ~ri|
(7)

Going forward, we specialize to targets that have cylindrical
symmetry, and like the annulus, are centered on the Z-axis.
With that restriction, the angular integrals within equation (6)
can be separated and computed:∫

∂R

dawiψ̄n =

∫
Γ

rdsψ̄n

2π∫
0

widϕ (8)

The remaining integration is along the path Γ, formed by the
intersection of the Y Z plane with the target surface. And for
the second boundary integral:∫

∂R

da ψ̄win =

∫
Γ

rdsψ̄

2π∫
0

windϕ (9)

The angular integral appearing in equation (8) is well known
(Brebbia & Dominguez) [27]:

F (r, z, ri, zi) ≡
2π∫
0

widϕ =
1

π
√
A+B

K(k) (10)

K(k) is the complete elliptic integral of the first kind, with
modulus k:

k =

√
2B

A+B
; A ≡ r2+r2

i +(z − zi)2 ; B ≡ 2rri (11)
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Fig. 2. An example of a boundary element mesh covering the right half
of an oblate spheroidal body – 62 elements; integration path is taken as
counter-clockwise. Large-axis diameter is 8.0 cm.

The remaining angular integral of equation (9) is obtained
by taking the directional derivative of equation (10) along
a surface unit normal, pointing to the target’s interior –
i.e., outward directed relative to the solution space. This is
developed further in Appendix A. The Leibniz integral rule is
used to permit interchange of differentiation with integration.

An example mesh of the remaining path for integration
is shown in Figure 2 for an oblate spheroid. The Z-axis is
coincident with the body axis. Because of symmetry, only one
half of the boundary path requires a mesh. The example also
illustrates a choice to use greater refinement where electrical
charge has a greater tendency to accumulate, such as portions
of higher curvature.

Returning to the boundary integral equation (6), we now
have:

ciψ̄(~ri) =

∫
Γ

rds ψ̄nF (r, z, ri, zi)−
∫
Γ

rds ψ̄Fn(r, z, ri, zi)

(12)
Subscript n indicates the directional derivative operation in the
direction of the outward unit normal, i.e. toward the object’s
interior. Particular derivatives of the angular integral, needed
to compute a directional derivative, are further illustrated in
Appendix A.

Using equation (5) to incorporate the unknown potential
function, we have:

ci(ψ(~ri)− ψs(~ri)) =
∫
Γ

rds(ψn − ψsn) F (r, z, ri, zi)

−
∫
Γ

rds (ψ − ψs)Fn(r, z, ri, zi)

(13)
Along the boundary, the potential is an unknown constant:
ψ(Γ) = V0. Surface charge on the object boundary, σ, is
related to the normal derivative of the potential from ψn =
−σ/ε0, provided the unit normal is directed out of the target,
opposite to the normal direction we have already assigned
for our boundary element formulation. Thus, the minus sign
preceding surface charge density should be dropped. If not,
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the determined surface charge density will simply be opposite
what is expected. Introducing the surface charge and placing
all unknown quantities onto the left hand side of equation (13),
we have:

V0(ci +
∫
Γ

rdsFin)−
∫
Γ

rds σ
ε0
Fi =

ciψs(~ri)−
∫
Γ

rdsψsnFi +
∫
Γ

rdsψsFin
(14)

Arguments of the function F (r, z, ri, zi) are suppressed in
equation (14) in order to improve readability, but a subscript
is appended as a reminder of dependence on location (ri, zi).

Further progress requires specification of the types of basis
functions that are used to represent surface charge σ along
the boundary Γ shown in Figure 2, which illustrates an oblate
spheroidal mesh. Though a variety of options are available,
the simple choice of constant elements works well and is used
here:

V0(ci +
∑
j

∫
Γj

rdsFin)−
∑
j

σj
ε0

∫
Γj

rds Fi =

ciψs(~ri)−
∑
j

∫
Γj

rdsψsnFi +
∑
j

∫
Γj

rdsψsFin

(15)
Equation (15) includes an unknown surface charge density for
each boundary segment, as well as a single unknown body
potential. If the location (ri, zi) is repeatedly chosen at the
center of each of the N boundary segments, then we have a
system of N equations in N + 1 unknowns – one unknown
surface charge density per segment and the unknown body
potential. An additional equation is therefore needed if we
enforce charge neutrality over an ungrounded slab:∫

∂R

σ da = 2π

∫
Γ

σ rds =0 (16)

As before, cylindrical symmetry is assumed. Using constant
element basis functions for surface charge density, equation
(16) becomes:

2π
∑
j

σj

sj+1∫
sj

rds = 0 (17)

The remaining path-segment integrals are evaluated analyti-
cally. This additional equation (17) is not needed when the
target body has been grounded, placing it at zero potential.
The problem has been coded both ways so that solutions may
be examined and compared.

Once the unknowns have been found, results are entered
into equation (13) to permit a calculation of potential at any
point in space outside the target:

ψ(~ri) = ψs(~ri)+∫
Γ

rds( σε0 − ψsn) Fi −
∫
Γ

rds (V0 − ψs)Fin (18)

Known potential and surface charge densities are inserted into
equation (18), and because the field point is outside the target,
ci = 1.0. Out of convenience, both equations (15) and (18)
are scaled with the factor 2ε0/α, the reciprocal of the factor
that precedes the integral in equation (1). After multiplication,
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Fig. 3. Plot of normalized surface charge density along the path
surrounding the 8 cm oblate spheroidal body. The bottom of the spheroid
is at left, while the top of the spheroid, closest to the annulus, is at
the right. The pronounced increase in negative surface charge density
occurs beneath the positively charged annular ring.

the unknown and computed values become:

unknowns :
{
ε0V0

α ;
σj
α

}
;

computed potentials :
{

2ε0ψ(~ri)
α

} (19)

Thus, computed surface charge densities are scaled by the
annulus surface charge density, and therefore dimensionless,
while computed potentials have units of length – here, cm
units are used (Note: the factor of 2 from the scaling factor
does not appear together with the set of unknowns; only with
external potential values.)

For the oblate spheroidal body illustrated in Figure 2, the
surface charge density along the boundary was computed for
the same annulus considered earlier in Figure 1 – inner radius
of 2.0 cm and outer radius of 2.2 cm. The annulus was placed
0.2 cm above the top of the spheroidal body and dielectric
constant set to 1.0. Surface charge density, normalized by
the annulus charge density, is plotted in Figure 3 for both
a grounded and ungrounded spheroidal body. The horizontal
coordinate is the path distance along the body, starting at the
bottom and moving counterclockwise to eventually reach the
top.

Setting annulus charge density to 1.0 pC/cm2, annulus
total charge is 2.639 pC, while total charge on the grounded
oblate spheroid is -2.554 pC. When the body is grounded,
annulus potential (at its midpoint) is 0.173 cm (0.977 volt).
If ungrounded, the annulus potential rises to 0.310 cm (1.75
volt), while the body’s potential is 0.0724 cm (0.41 volt). If
the oblate spheroid is stretched two times along its horizontal
axis, total charge on the grounded sphere becomes -2.592 pC,
moving closer to the annular charge. Annulus potential when
the body is grounded is 0.158 cm (0.892 volt). If ungrounded,
the annulus potential is 0.234 cm (1.321 volt).

One measure of capacitance can now be computed from the
scaled quantities as the amount of body-induced charge under
grounded conditions, divided by the annulus potential needed
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to achieve it, computed at its midpoint:

C =
Qb
Va

=
2ε0Q̂b
2ε0ψa
α

=
2ε0Q̂b

ψ̂a
(20)

A rationale for this definition is the expectation that capaci-
tance related loss is only connected with target-induced charge
distributions, as explained in the next section. Quantities with
an over-carrot are directly computed with the BE model –
Q̂b gives the amount of charge induced on the body, while
grounded, due to annulus potential ψa. The former has units
of squared-cm, while the latter has units of cm. Charge on the
annulus itself is due to its interaction with all objects in its
environment, and the definition above is meant to capture just
the redistribution of charge on the nearby target. As the BE
model shows, surface charge induced on the grounded target
is nearly the same as annulus charge when annulus and target
are very close.

According to the definition of equation (20), capacitance is
2.55 pF. If the entire charge of the annulus had been used
instead, capacitance would have been 2.70 pF. This small
capacitance difference indicates that interaction with the target
dominates. Furthermore, the similarity between the two curves
shown in Figure 3 suggests that the chosen oblate spheroid is
already large enough to function as an adequate ground by
itself – essentially, the spheroid equator and bottom function
like a repository of charge.

If the oblate spheroid is made larger by stretching in the XY
plane so that the long axis diameter is 16.0 cm instead of the
8.0 cm shown in Figure 2, capacitance is 2.906 pF. Again, if all
annular charge were included in the calculation, capacitance
would have been 2.960 pF. This even smaller difference shows
that the annulus-target interaction dominates. Strong similarity
between grounded and ungrounded curves again shows that
larger conductive bodies experience charge redistribution as
though they were grounded even if ungrounded. Of course,
target-induced charge is expected to decrease substantially
as the annulus-target distance increases. In that situation,
induced charge will also become considerably smaller than
the annular charge, indicating that annulus charge becomes
more a consequence of its interaction with other features of its
environment, in particular the hypothetical grounded spherical
shell at infinity.

Obviously, the ungrounded spheroid has no net charge, so
that the strong accumulation of negative charge just beneath
the annulus location must be exactly counterbalanced by a cor-
responding amount of positive charge elsewhere. Clearly, the
best location for storing the positive charge is at the spheroid’s
equator where curvature is highest and ample surface area
is available, but also along the spheroid underbelly farthest
from the annulus. Both are far from the positively charged
annulus. Figure 4 shows the charge distribution for the larger,
16 cm diameter oblate spheroid. Clearly, the spheroid is now
large enough that it behaves as its own ground – grounded
and ungrounded curves are nearly the same, apart from the
small positive spike along the side of the spheroid. Because
the human body is much larger still, it too is expected to
behave as an excellent ground when annular charge is small.
Locations on the target body, farthest from the annulus, serve
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Fig. 4. Plot of normalized surface charge density along the path
surrounding the 16 cm oblate spheroidal body. The bottom of the
spheroid is at left, while the top of the spheroid, closest to the annulus, is
at the right. The pronounced increase in negative surface charge density
occurs beneath the positively charged annular ring.

as effective ground points, providing charge that gathers on the
body surface beneath the annulus when nearby. The formation
and dissipation of these surface charge distributions constitute
the origin of capacitance-related losses. Additional measures
of capacitance are considered in a later section.

III. CAPACITANCE LOSS

This section considers capacitance-related losses associated
with loop coils placed in the immediate vicinity of general
conductive bodies. An ideal resonant tank circuit consists of an
ideal inductor and ideal capacitor in parallel. Once the inductor
is near a conductive target, however, a resistance appears in
series with the inductance. Thus far, such resistance has been
computed using an analytical formula developed for very short
solenoids, arranged concentrically, and connected in series [1].
Experimental work has shown that agreement with experiment
is essentially quantitative for conductivity values above ∼0.2
S/m, and over distances spanning from ∼0.2 cm out to a few
cm [9].

For lower conductivity targets, especially biological tissues,
the important conductivity range for imaging purposes is from
∼0.05 S/m up to ∼1.5 S/m [12]–[15]. Of concern here is the
extent to which capacitance-related losses spoil the agreement
with experiment when values fall into the lower portions of
that range. As with the inductor, capacitance-related loss R
will appear as a resistance in series with the capacitance C that
naturally forms between coil loops and a nearby conductive
target. An equivalent circuit representing the inductance and
relevant capacitances, together with their associated losses is
shown in Figure 5.

An additional capacitance Cg is shown in the circuit to
represent the inevitable capacitance that also appears between
instrumentation common traces and the conductive target. No
attempt is made to compute this capacitance, though experi-
mental measurements attempt to find an upper bound. Ideally,
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Fig. 5. Shows the key components of the LC tank circuit that contribute
to loss; L is the sensor inductance, Cp is an added fixed capacitance
needed for tuning; C represents the coil-target capacitance while R is
a capacitive loss associated with the target; finally, Cg represents the
“return” capacitance between instrumentation common lines and the
target/environment.

this “return” capacitance would be small and help minimize
the role that capacitive loss will play. When measuring the
capacitance of the circuit in Figure 5, Cg is lumped together
with C in a combined capacitance of CgC/(Cg + C). An
additional capacitance needed to tune the circuit to a desired
frequency is shown as Cp.

The admittance, Y , of the above circuit (considering Cg is
lumped in together with C, and just written as C here) can be
written down from elementary circuit analysis theory:

Y = G+ iB =
1

RL + iωL
+

1

R− i 1
ωC

+ iωCp (21)

Current instrumentation based upon the Texas Instrument
LDC1101 ( [21], [22]) operates in resonance, so that B = 0.
The real part of admittance is measured at resonance, together
with resonant frequency, and is equal to:

G =
RL

R2
L + ω2L2

+
1

R

ω2R2C2

1 + ω2R2C2
(22)

Of course, RL, R and C are not actual physical components
of the circuit, but represent electromagnetic properties of the
coil-target interaction. The coil-target portion of capacitance
has been computed in previous sections, so the concern now
is how to specify R . The product RC is directly related to the
rate of charge formation or relaxation along a target boundary.

The continuity equation applies to any target location, and
describes the charging or discharging process there:

∇ ·~j +
∂ρ

∂t
= 0 (23)

Introducing Ohm’s Law and Gauss’ Law, with the assumption
that conductivity is nominally constant,

g

ε
ρ(t) +

∂ρ

∂t
= 0 (24)

A solution for equation (24), satisfying the initial condition
that ρ(0) = ρC , is:

ρ(t) = ρCe
−t/τc ; τc = ε/g (25)
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Fig. 6. Second term behavior of admittance at resonance from equation
26; applied frequency is 10 MHz and relative permittivity of either 40 or
60; capacitance C = 0.5 or 1.5 pF

The time constant for charge relaxation (page 139 of [11])
provides a measure of the time required to form or dissipate
surface charge on conductive targets. Here, we set this time
constant equal to RC, providing a measure of capacitive loss
associated with capacitance C; i.e., RC = ε/g. With this
identification as time constant, equation (22) becomes:

G =
RL

R2
L + ω2L2

+ C
ω2 (ε/g)

1 + ω2(ε/g)
2 (26)

Since RL ≤ 1Ω << ωL in all cases of interest, and
since theory shows RL ∝ g, the first term of equation
(26) will always grow linearly with conductivity. For very
small conductivity, the second term will also grow linearly
with g. However, as conductivity continues to increase, the
second term of G reaches a maximum and then decreases
as 1/g. Clearly, resistance R is more heavily influenced by
target conductivities g . 2.0 mS/cm, than the much higher
conductivity of Cu traces associated with a coil – indeed,
R→ 0 as g →∞.

Second term behavior is illustrated in Figure 6 for two
different values of relative permittivity while frequency is set
equal to 10 MHz. C was set at either 0.5 pF or 1.5 pF. As
expected, decreased capacitance suppresses the importance of
capacitive loss. The figure also shows that increased relative
permittivity shifts the curves toward higher conductivity.

In order to minimize the impact of the behavior shown
in Figure 6, two strategies might be used – using a lower
value of inductance so that the first term is increased; and,
reducing loop-to-target capacitance as much as possible so
that the second term is decreased, accomplished with reduced
trace width. Inductances commonly used for single-coil MIT
are ∼ 2µH, so that for RL ∼ 1Ω, the first term in equation
(26) is ∼ 63µS. Thus, the behavior illustrated in Figure 6
more likely causes problems at low conductivity. The role
of Cg is to reduce the effective value of the capacitance
C appearing in the equations. Cg may become larger when
using a large ground plane on instrumentation PCB’s and even
further increased by its connection to larger objects, such as
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a battery or an external power supply. If Cg is large (tens of
pF), then results of Figure 6 would indicate a more pronounced
capacitance related loss contribution to total loss.

A further way to reduce C and thus minimize capacitive
losses is to at least partially cancel the parasitic capacitance
itself through appropriate feed back strategies. Examples of
cancellation have been reported [17]–[20], though the essential
idea can be traced back to neutralization of vacuum tube
RF power amplifiers. Unfortunately, the stray capacitance
developed during a single-coil MIT scan varies significantly –
as demonstrated in Figure 8 of section 5.

The behavior of equation (26) has been observed in un-
published experiments in our lab that measure admittance as
a function of conductivity. Once conductivity exceeds ∼1.0
mS/cm, linearity is obtained thereafter, but is preceded by a
small “bump” in the data as Figure 6 anticipates.

IV. CAPACITANCE FOR 2-CONDUCTOR SYSTEM

This section offers an approach to help justify the use
of constant annular charge density and a clarification of the
relevant capacitance responsible for capacitive loss. For a
system consisting of the two conductors – annular ring (1)
and conductive slab (2) just beneath it, the charge on each
can be written as a linear combination of the potentials on
each [26]:

Qi =

2∑
j=1

CijVj ; i = 1, 2 (27)

Actually, instrument PCB common traces could be added in
as a third conductor, but these are always assigned to zero
potential and do not affect our analysis. In a first experiment
that keeps the second conductor (target) at ground potential
(V2 = 0; i.e. same as PCB common traces), equation (27)
becomes:

C11 =
Q′1
V ′1

≥ 0 ; C21 =
Q′2
V ′1
≤ 0 (28)

In a second experiment, body conductor 2 is initially grounded
to remove all of its charge, but then disconnected from ground
while conductor 1, charged as in the first experiment, is
brought into the same position employed in the first exper-
iment. Equation (27) then becomes:

Q′′1 = C11V
′′
1 + C12V

′′
2 ; 0 = C21V

′′
1 + C22V

′′
2 (29)

Realizing that the capacitance matrix is symmetric, C12 =
C21. The remaining coefficient of capacitance C22 is found
from the second result in equation (29) as:

C22 = − Q
′
2

V ′′2

V ′′1
V ′1

≥ 0 (30)

As a consistency check on BE solutions, the first of the
equations from (29) can be rewritten, with the help of equation
(28) and symmetry, as:

Q′′1 = Q′1 = Q′1
V ′′1
V ′1

+ Q′2
V ′′2
V ′1

(31)

Results from the boundary element computations can be
directly introduced into equation (31) to check for consistency.
Equation (31) may also be divided by Q′1 to permit a simpler
check on consistency:

1 =
V ′′1
V ′1

+
Q′2 V

′′
2

Q′1 V
′
1

(32)

Clearly, the right hand side of Equation (32) should equal
1.0. Equation (31), however, was derived under the require-
ment that all components are true conductors, with each having
an equipotential surface across their respective boundaries.
That is not the case for the annular conductor included in the
computation, which was assumed to have a uniform charge
distribution. So, equation (31) or (32) could only be approx-
imately satisfied. Nevertheless, in all computations reported
here, the right hand side of equation (32) has remained in
a range from 0.9990 to 1.0001, indicating that assigning
a uniform charge density to the annulus is acceptable for
capacitance calculations.

Using the oblate spheroid of Figure 2, and placing the
annular ring 0.2 cm above the spheroid as before, we find
that C11 = 2.70 pF, C12 = -2.55 pF and C22 = 5.47 pF; the
right hand side of equation (32) is 1.00006 (almost exactly 1.0
as required). If the spheroid is stretched two times along its
horizontal axis, computed C11 = 2.96 pF, C12 = - 2.906 pF
and C22 = 8.746 pF, which is not surprising since the spheroid
has grown considerably in size. The capacitance defined by
equation (20) is, in fact, C12 as specified here.

V. PARASITIC COIL CAPACITANCE OVER 2% KCL
SOLUTION

In previous work, the inductive loss in a multi-loop coil
(see Appendix C), placed above a 2% KCl solution contained
inside a 14 cm diameter petri dish at a depth of 2 cm,
was measured while manually moving the coil along the
petri dish axis. The results of that experiment, together with
theoretical predictions, are replotted in Figure 7 [9]. Though
agreement with theory is excellent, we wish to explore the
magnitude of the error committed by not including capacitance
related losses, as proposed in equation (26) and graphically in
Figure 6. The inductive loss shown in Figure 7 was measured
using the Texas Instruments LDC1101 inductance to digital
converter, which measures admittance of an LC tank circuit
while in resonance – i.e., the left side of equation (26).
However, only the first term of equation (26) was considered
important when computing G from LDC1101 data.

To assess the omitted term, it is necessary to know the
extra capacitance that forms across the LC circuit while
the inductive sensor is moved along the petri dish axis.
This is readily accomplished with the LDC1101 since it
simultaneously measures the resonant frequency, which is
nominally ∼8.63 MHz in this experiment. Since inductance
is known, capacitance is easily calculated – in particular the
capacitance in excess of that physically connected within the
actual circuit. Since both inductive and capacitance-related
losses are exceedingly small, setting the imaginary part of
admittance, B, equal to zero results in the simple relation:
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Fig. 7. Inductive loss in coil located at various positions above a 2%
KCl solution, filling a 14 cm petri dish to a depth of 2 cm; the dashed
vertical line locates the solution surface.
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This “excess” capacitance accounts for the two contributions depicted in
Figure 5, C and Cg .

ω =
1√

L(C + Cp)
(33)

From ω, the capacitance C is found, since other quantities
in equation (33) are known. It is this excess capacitance that
contributes to the two components (C and Cg) of capacitance
shown in the schematic diagram of Figure 5. Figure 8 shows
the excess capacitance over the entire positioning range of
the coil as it moves along the petri dish axis. It is only the
excess capacitance that should be used in equation (26) or
(34) introduced below, since capacitance obtained when the
coil-to-target distance is large would not contribute to charge
relaxation or dissipation within the nearby conductive target.

Since ε, g and ω are all known for the petri dish experiment,
the second term of equation (26) can be computed for each
coil position. This is shown in Figure 9, together with a second
axis indicating the equivalent inductive loss that should be
considered as capacitance loss.

Noting that inductive loss (RL) is small compared with ωL,
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Fig. 9. A plot of the second term from equation (26), related to the
capacitance loss contribution to admittance; the right hand axis shows
the corresponding amount of loss as equivalent inductive loss – see
equation (34).

we can directly solve equation (26) for the corrected inductive
loss to give:

RL = ω2L2G − ω2L2 C
ω2 (ε/g)

1 + ω2(ε/g)
2 (34)

The second term appearing on the right hand side of equation
(34) is a loss term not considered in arriving at the data
presented in Figure 7. This missing amount is shown in Figure
9 via the right hand axis and contributes ∼1% to the inductive
loss reported in Figure 7. Evidently, its contribution in this
case is quite small and can be safely neglected. However,
2% KCl has a significantly higher conductivity than human
body tissues, which nominally falls into the range from ∼0.1
to 1.5 S/m [12]–[15] while 2% KCl is 3.2 S/m. Note from
Figure 6 that capacitance related loss only becomes minor for
conductivities well above 0.2 S/m (2.0 mS/cm). In the event
that the second term in equation (34) is not negligible, equation
(34) offers an approach for providing a better estimation of
true inductive loss.

Finally, we use the BE model to help identify the magnitude
of the “return” capacitance as represented by Cg in Figure 5.
Figure 10 shows the mesh used to envelop the KCl solution
contained within the petri dish. Placing the same annulus as
used previously at a distance of 0.2 cm above the aqueous
KCl target, charge density is computed from the BE model,
and plotted in Figure 11.

Focusing only on the portion of the target surface located
just 0.2 cm beneath the annulus, there isn’t much difference
in the way that charge is distributed along the aqueous KCl
target surface for grounded and ungrounded cases. Of course,
the negative charge density in the ungrounded case must be
compensated by positive charge elsewhere, which is accom-
modated by the small bumps at the corners and an additional
small charge density along the bottom of the liquid target.

Figure 12 shows the computed capacitance of the annulus-
petri system over a range of gap distances spanning from 0.2
cm up to 10.0 cm. The plot includes the previously shown
results for the annulus over a ground plane, as well as the
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solution, which fills the petri dish to a depth of 2.0 cm. Annulus gap
above solution is 0.2 cm. Notice the bumps of positive charge at the
corners of the ungrounded target – needed to achieve net zero charge.

coefficients C11 and C12. Annulus inner and outer radii are
2.0 and 2.2 cm respectively. Note that equations (1) and (3)
predict an isolated annulus capacitance of ∼1.20 pF, which
the C11 plot approaches asymptotically.

Of the capacitance definitions considered, C12 is specifically
connected with the formation of charge on the conductive
target – the only conductor where capacitance-related loss is
expected to be significant, given the form of equations (26) and
(34). Note that for metal PCB traces, where conductivity may
be considered as infinite, the second term of either equation
approaches zero. C12 directly captures the extent to which
a charge distribution can arise on the grounded target in
response to an electrical potential increase on the annulus.
And since only redistribution of target charges will contribute
to capacitance-related loss, C12 is regarded as the appropriate
value for C in the schematic shown in Figure 5. Any additional
annulus capacitance, such as that present when an annulus is
isolated in space, cannot significantly contribute to loss.

As shown in Figure 12, the magnitude of C12 decreases
quickly with distance from the salt-solution-petri target. If
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Fig. 12. Capacitance of annulus-target system as a function of gap
distance between annulus and 14 cm diameter slab as meshed in Figure
10. Annulus has inner radius = 2.0 cm and outer radius = 2.2 cm. Infinite
ground plane is shown for sake of comparison.

we let this annulus approximate the outer 2.0 cm loops of
our PCB coil sensor (Appendix C), Figure 12 then provides
an upper bound to what is measured, since there is still the
additional capacitance Cg that serves as a return capacitance
to instrument ground. Considering measured capacitance to
be a combination of C and Cg connected in series, then the
capacitance measured in Figure 8 must be controlled by Cg –
in fact, the values in Figure 8 can be considered as a measure
for Cg . This result is expected since the coil loops are usually
much closer to the target than instrumentation ground paths. If
the annulus trace width is increased to 0.4 cm, extending from
1.8 cm to 2.2 cm, capacitance increases to 3.973 pF when at
a distance of 0.2 cm from the petri fluid. The situation could
degrade however, leading to larger Cg , if the instrumentation
PCB ground plane grows in area or if the instrument common
is connected to extended external circuits.

Figure 12 also demonstrates the importance of C12 com-
pared with C11. The latter tracks the capacitance of the annulus
over a ground plane and becomes asymptotic to the non-zero
free space capacitance of the annulus, reflecting the interaction
of an annulus with a grounded shell at infinity – which should
not be considered in assessing loss via equation (26) or (34).

VI. EXPERIMENTAL CAPACITANCE OF A THIN COPPER
ANNULUS OVER PLAY-DOH™

To further validate the models and ideas of the previous
sections, experimental measurements were made of the ca-
pacitance of an individual annular loop placed at various
distances above a conductive phantom prepared from Play-
Doh™, which has a conductivity ∼3.0 S/m. A direct compar-
ison is then made with theoretical BE calculations.

The test annulus was prepared from 0.1 mm thick copper
sheet cut to an inner diameter of ∼5.50 cm and outer diameter
of ∼6.35 cm. Figure 13 shows the annulus bonded to a plastic
petri lid resting ∼3 mm above a ∼1.0 cm thick slab of Play-
Doh confined to a petri dish having a diameter of 8.6 cm.

Additional gap distance between the copper annulus and
underlying Play-Doh was built up with a sequence of six
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Fig. 13. Petri dish lid, with attached 0.1 mm thick copper annulus rests
above 8.6 cm diameter petri dish, filled to a height of 1.0 ± 0.1 cm with
Play-Doh™.
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Fig. 14. Results from experiment that measure the capacitance of
the annular loop, Play-Doh conductor system, shown together with
theoretical computations.

0.33 cm thick EVA (ethylene vinyl-acetate co-polymer) foam
sheets. Capacitance was obtained from two different pulse
width measurements corresponding to insertion of two stan-
dard resistance values in series with the overall circuit. This
permits subtraction of the unknown loss resistance of Play-
Doh. The complete circuit then consists of the capacitance
formed between the Play-Doh and copper annulus, as shown,
together with one of the two sense resistors. The capacitance
of the leads running from the setup to instrumentation was
separately measured (∼8.5 pF) and subtracted from the total
system capacitance. The entire test setup rests on a 4.0 cm
thick EVA foam slab, isolating the system of conductors.

Figure 14 shows the results of the seven measurements of
annulus-Play-Doh capacitance, along with predicted values of
C11 and C12 capacitance using the boundary element model
discussed in previous sections. Error bars are shown on each
of the data points, indicating the capacitance measurements
over several replicates produced an error of ∼ ±0.5 pF and
gap error of ∼ ±1.0 mm. Error is sufficiently small, while gap
range is sufficiently large, that we can say with confidence that
C12 is indeed the capacitance measured in this test.

VII. EFFECTS OF CAPACITANCE LOSS CORRECTION ON
MIT IMAGING

Given the strong similarity of Figures 7, 8 and 9, capacitive
loss decays in a manner similar to inductive loss. Thus, it
seems that the greatest benefit of including a loss correction
due to parasitic capacitance might be to more accurately
assess conductivity, but not necessarily gaining image quality
improvement. Equivalently, failure to include losses due to
coil-target capacitance may only produce an overestimate of
electrical conductivity.

This question is tested here using a laboratory-created
phantom, prepared from agarose [23], as previously described
[9]. The phantom considered is contained in a 23 cm square
petri dish, filled to a depth of ∼2 cm. Two 5.0 cm square
× 2.0 cm tall agarose plugs are located along the petri
diagonal, separated by a corner-to-corner gap of ∼0.5 cm. The
remaining phantom space is filled to a depth of 2.0 cm with
agarose having conductivity in the range ∼0.05 to 0.1 S/m.
As described in [9] (open access), a hand-scan was performed
that places the coil sensor at ∼998 locations in the immediate
vicinity of the phantom surface while coil location is tracked
to a precision of ±0.25 mm (see Figures 4 and 13 of [9]).
Tracking is accomplished using a surgical-suite IR camera
from NDI ( [4], [24]). As noted previously [9], hand placement
ultimately leads to redundant sampling in numerous locations,
while some regions are inadequately sampled, even though
coil location is accurately known.

The choice of this particular data set for image reconstruc-
tion testing is motivated by a recent transition to the LDC1101
for measuring tank circuit losses. Previous electronics always
imposed a fixed frequency on the coil sensor [1], while
the LDC1101 does not. Fortunately, LDC1101 measurements
also include resonant frequency, which varies due to parasitic
capacitance changes. Thus, stray capacitance is measurable.

Scan data for this phantom is processed using full 3D image
reconstruction, as described by Feldkamp [1] – the previous
analysis [9] used 2D image reconstruction. Uncorrected induc-
tive sensor loss data was first used for image reconstruction
and then again after applying a correction, as indicated in
equation (34). Applying a correction requires a value for
the nominal phantom conductivity, as well as the phantom
relative permittivity. The latter has been measured previously
[6] as ∼68, regardless of salt doping. Image reconstruction of
uncorrected loss data leads to a nominal value of conductivity
for the entire phantom, which is ∼0.5 S/m. With these two
values available, Figure 15 shows a plot of the corrected loss,
presumably now primarily inductive, against the uncorrected
loss obtained from the LDC1101 chip.

As Figure 15 indicates, the amount of correction, given
by the amount of departure from the dashed line, varies
considerably over the 998 hand-scanned points. Though there
appears to be no pattern, the amount of correction is most
impacted by proximity to the agarose target. This expectation
is approximately borne out in the plot given in Figure 16,
which shows that the amount of correction generally grows as
the phantom surface is approached more closely.

Even though Figure 16 shows that capacitance related loss
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Fig. 16. Detailed look at how the correction due to capacitance-related
loss depends upon distance between coil sensor and phantom.

follows a pattern of decrease as the sensor-phantom distance
grows, there is still considerable noise. The amount of noise
is sufficient to question whether image reconstruction would
even benefit from loss correction.

3D Image reconstruction for the scan under examination
is performed twice, once without capacitive loss correction
and then again with correction. Image reconstruction uses
Tikhonov regularization [1], which minimizes the sum of error
and solution gradient penalty norms, the latter scaled by a
smoothing parameter λ. An L-curve strategy was used to
discern the most suitable value for λ, though the same value
was obtained and used for either data set. Alternatively, λ
may be set using a ‘discrepancy principle’ [25]. Alternative
calculations were performed using a ‘shifted conductivity’
penalty norm [5], though conclusions reached here are not
altered. More importantly, image reconstruction from single-
coil MIT scan data requires an ‘instrumentation offset’ vari-
able to serve as an unknown measure of the inductive loss
approached asymptotically at infinite separation. Image fidelity
is improved when this small offset is included.

Fig. 17. Images obtained at slice Z = 1.0 cm for reconstruction
without capacitance loss correction (top), and with correction (bottom).

To facilitate objective comparison, identical slices through
the reconstructed images are shown. The first slice is perpen-
dicular to the phantom’s Z-axis at a location midway between
phantom top and bottom horizons, i.e., at ∼ Z = 1.0 cm. This
is shown for both uncorrected and corrected images in Figure
17. A simple linear 256-step color scale is used, transitioning
from black at 0% to red at 33.3% to yellow at 66.6% and
finally white at 100% full scale.

Comparison of images in Figure 17 reveal some significant
differences in image fidelity. The conductive plugs are more
readily discerned in the corrected image. Background conduc-
tivity is also more in line with the known small conductivity
outside the plugs. There is some problem near petri bound-
aries, but this is mostly due to inadequate sampling near petri
boundaries (Figure 13 of ref. [9]). Another difference is that
conductivity trends higher in the absence of correction, which
is expected. This all suggests that a reduction in coil-target
capacitance is the preferable strategy for obtaining accurate
inductive losses. Performing scans by hand-held maneuvering
of an enclosure, with coil sensor attached, suggests a poor
strategy, inasmuch as the conductive human body facilitates
the development of capacitance between electronics and target.
And this is in addition to the already problematic sampling en-

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2022.3220431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



12 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Fig. 18. Diagonal slices passing perpendicular to the XY plane of the
phantom, comparing uncorrected (top) and corrected (bottom) images.

countered with hand sampling, where samples quickly become
redundant, or locations are missed, as shown in [9].

The second slice examined is perpendicular to the XY plane
of the phantom and passing through the diagonal axis that runs
through the plug centers. These are shown in Figure 18, both
for uncorrected and corrected conditions. Once again, correc-
tion for capacitance loss improves image fidelity, indicating
better contrast between plugs and surroundings. And as before,
the corrected image shows maximum conductivity values
displaced downward by ∼0.14 S/m relative to uncorrected.

Figure 18, as well as 17, shows that features as small
as the 0.5 cm gap can be resolved clearly along the entire
Z-axis of the phantom, and even more so with capacitance
loss correction. In the images, the gap appears to exceed the
true corner-to-corner distance, and square plugs appear more
rounded than square. This is commonly found with an image
reconstruction approach that penalizes the solution gradient
norm – sharp edges and corners are smoothed and rounded.
Nevertheless the two plugs are distinct in both images.

In related work [5] involving virtual phantoms, where capac-
itive loss is absent, gap discernment was easily maintained up
to the full depth of a 3.0 cm thick phantom for the same style
coil sensor. There, the two inclusions were 3.8 cm wide × 1.8
cm thick strips buried in a 3.0 cm thick phantom. Separation
was ∼4.0 cm and each spans the entire 16 cm length of the
phantom. Buried conductive and nonconductive strips were

both considered, with the nonconductive strips meant to model
bone embedded in muscle. As shown there, simulated bone
strips were somewhat more easily resolved than conductive
strips. That work, as well as the new work here, adds credence
to the results reported in [1] showing an ability of single-
coil MIT to approximately resolve bone structure along the
thoracic spine, which lies only a short distance beneath the
body surface. Correcting for capacitance related losses should
help to further improve those images.

VIII. APPENDICES

A. Angular Integrals
The angular integral appearing in equation (9) follows

directly from the angular integral developed in equation (10).
For the case of axis-symmetric geometry, derivatives with
respect to ‘r’ and ‘z’ are required. These are shown here:

∂

∂z

2π∫
0

widϕ = − z − zi
π(A+B)

3/2
(K(k) + kK ′(k)) (35)

∂
∂r

2π∫
0

widϕ = − r+ri
π(A+B)3/2

×
(
K(k)− K′(k)

k

[
2ri
r+ri

− k2
]) (36)

k =

√
2B

A+B
; A ≡ r2+r2

i +(z − zi)2 ; B ≡ 2rri (37)

Finally, the derivative of the complete elliptic integral K(k)
can be written in terms of the complete elliptic integral of the
second kind E(k):

K ′(k) =
E(k)

k(1− k2)
− K(k)

k
(38)

In the event that the modulus k =
√

2B/(A+B) is very small,
equation (38) is replaced by:

K ′(k) =
1

4
π k(1 + 1.125 k2) (39)

Equation (39) results from the expansion of the complete
elliptic integral K(k) and is used in calculations when k <
0.0001.

Once derivatives (35) and (36) have been obtained, the
directional derivative of the potential ψ in some arbitrary
direction given by the unit vector n̂ is found as:

∂ψ

∂n
= ∇ψ · n̂ =

∂ψ

∂r
nr +

∂ψ

∂z
nz (40)

A unit vector, normal to the conductive target, and directed
toward the interior of the target is given by:

n̂ = (nr, nz) = (− sinβ, cosβ) (41)

Equation (41) is appropriate for a counterclockwise path
around the object. A unit tangent vector, pointing along
a segment or element in the counterclockwise direction is
similarly given by:

T̂ = (tr, tz) = (cosβ, sinβ) (42)
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TABLE I
SYMBOLS APPEARING WITHIN THE ARTICLE

Symbol Quantity Typical Units
ρ(~r) charge density coulomb/cm3

g(~r) electrical conductivity Siemens/m, or (S/m)
~j current density pC/cm2sec
r radial distance centimeters, or cm
C capacitance pF
z distance from XY plane centimeters, or cm
Y Admittance µS
ε permittivity F/m
ω field angular frequency π radians/second
α, σ surface charge density pC/cm2

ψs, ψ electrostatic potential volts
V0 target potential volts

Fig. 19. Two-layer, PCB coil sensor, consisting of 5 Cu traces per layer;
each trace is 1.0 mm wide; loop radii – 0.4, 0.8, 1.2, 1.6, 2.0 cm.

The two components are directly computed from boundary
segment vertices:

cosβ =
∆r

∆s
; sinβ =

∆z

∆s
; ∆s =

√
∆z2 + ∆r2 (43)

B. Table of Symbols
Table 1 provides a partial listing of some of the symbols

used throughout. Units are also indicated in the last column.

C. PCB Coil Geometry
The PCB-based coil sensor used in all experiments de-

scribed in this paper is shown in Figure 19. There are two
layers, separated by ∼ 0.5 mm, while each layer consists of
five loops of Cu at the radii indicated.
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